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CHAPTER 1

INTRODUCTION

The Gulf of Mexico Wet Test exercise was conducted on Z7 April 1979 in the

area of the Mexican Basin shown in Fig. 1-1. The primary objective of the exercise

was an engineering test of the Acoustic Data Capsule (ACODAC) system's ability

to monitor ambient noise. In addition, signals from a series of SUS were recorded.

The purpose of that series was to obtain information about the geoacoustic

properties of the bottom in the region. The SUS source track, shown in Fig.1-1,

was a north-to-south line approximately 45 km long.

This region of the Gulf where the test was conducted has a relatively level,

smooth bottom with a very thick sediment (1000 m thick). Geoacoustic properties

of the bottom in the region as derived fom available literature are presented in

Chapter 2. The sound speed profile is illustrated in Figs. 1-2. Due to the bottom

limited characteristic of the region, acoustic propagation from sources at a depth

of 91 m is mainly via paths that reflect from and refract through the bottom.

NZ -Thus, a thorough analysis of acoustic propagation in the area requires the

quantification of the bottom sediment acoustic parameters.

The ACODAC system consisted of 1. hydrophones ranging in depth from 3.00

to 530 m. The ocean depth in the exercise region is approximately 3400 m. The

SUS were detonated at depths of 91 and 244 m. Due to the system electronic

setup, only the hydrophone at ZZ90 in recorded data of sufficient quality to derive

propagation loss. There were, however, sufficieni data to adequately describe

acoustic propagation in the test region.

The analysis was begun using the ARL:UT multipath processing .irstem

detailed in Ref. 1. The bottom loss versus bottom angle data described in Chapter

3 are the main data products of this system. Chapter 4 explains the bottom loss
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results in terms of ocean bottom (geoacoustic) models. These geoacoustic models

predict signal paths and attenuation using sediment sound speed and density

gradients, and the ratio of the compressional wave velocities in the sediment and

water at the water-sediment interface. The first two parameters are obtained

from geological survey data, presented in Chapter 2, and the ratio was derived

from the measured bottom loss data, explained in Chapter 3. The final analytical

step compares the measured bottom losses to those obtained from the modeling.

The measurements show the bottom loss to be quite low in the test region.

For example, at 32.50 grazing angle, a mean per bounce loss of 2.0 dB occurred at

50 Hz and 4.1 dB at 250 Hz. Botton losses calculated from the geoacoustic model

match quite well with measured data. Thus, a geoacoustic model of the test region

has been determined and can accurately predict bottom interactions.

I
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CHAPTER 2

GEOACOUSTIC DATA FOR THE WESTERN GULF OF MEXICO

The data discussed in this report were recorded at a site in t0,- ,ulf of

Mexico near the boundary of two depositional regions: the Lower Mis .ssippi Fan

and the Western Gulf. Figure 2-1 shows the Deep Sea Drilling Proj-. (DSDP) sites

in the area,2 ' 3 and an approximate delineation of depositional regions. Of

particular interest in this study are DSDP holes 90, 91, and 9Z, all near the test

area.

Figures 2-Z - 2-4 give information on the DSDP holes. Lithologically, the

most significant differences among the DSDP sites are the predominance of pelagic

sediment in the first 500 m at hole 90, the presence of sand in the upper 500 m at
ihole 91, and the shallowness at which claystone occurs at hole 92. The

predominance of carbonate ooze in the first few hundred meters at hole 90 is due

to a failure of turbidity curreritt from the east to reach this area, wh'ale the upper
180 m of sediment at hole 91 is due primarily to turbidity currents from the

Mississippi Fan. The deeper sediments at both holes 90 and 91 appear to be

turbidites derived primarily from the north, northwest, and west. However, as

shown in Fig. Z-Z, sediments down to 500 in are coarser grained at hole 91 than at

hole 90 and, in particular, sand is reported at hole 91 but not reported at hole 90.

Hole 9Z was drilled on a scarp formed presumably by a salt diapir. Tbhe

sediments at this site are much more consolidated than sediments at comparable

depths on the bathymetrically lower rise area. The greater ronsolidation suggests

that either the sediments at this hole have had a greater depth of burial in the

past, or salt diffusion facilitated consolidation.

Figure Z-3 s~hows the density profiles net-asured by the DSDP at these sites.

These density profiles reflect tle lithological differences discuss ead previously. The
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"densities of the turbidites at hole 91 due to the Mississippi Fan are greater and

show greater variation with depth than the pelagic sediments at hole 90. Also, the

density values of the three holes are largest at hole 92 where the sediments are

more consolidated.

Figure Z-4 shows the velocity profiles derived from the density profiles of

Fig. 2-3 using the velocity-density relationship of Hamilton.4  The velocity-

density reiationship for silt-clays and turbidites was calculated from Hamilton's

equation:

P = 1.135 Vp- 0.190

Figure Z-4 shows the large difference between velocity measurements for
-1

holes 90, 91, and 9Z. The gradient at hole 90 is approximately I sec ; at hole 9Z it
S-1 -1 -1

is about Z sec , and at hole 91 it is between 1 sec and 2 sec . Assuming that

the experimental accuracy is the same at each site, one would expect, on the basis

of velocity gradients and density contrasts, that bottom loss would be lower at hole

91 than hole 90. This would result from the shorter path lengths at hole 91 due to

the higher sound speed gradient and the greater variance of instantaneous

impedance with depth. Larger gradients imply smaller radii of curvature of the

transmitted paths, and larger variations in impedance lead to more reflections.

The relative bottom loss at hole 92 cannot be readily compared to that of holes 90

or 91 since the relief and shape of the scarp at hole 9Z will significantly affect

bottom loss at this site.

Figure 2-5 shows some velocity profiles found in the literature for the Gulf of

Mexico, which provide useful comparisons with those derived from DSDP data. The

solid curve is a composite profile derived at the Marine Science Institute (MSI,

Galveston, Texas) from mnultichannel seismic data, shot primarily in the western
5 6.part of the Gulf. The solid curve with circles is a profile derived by Gregory in

a similar region using the percentage of shale in the sediment column to estimate

velocity. Finally, the dashed curve was obtained by Matthews 7 from a regression

of interval velocities for seismic data obtained in an area of the Gulf of Mexico

where the sediments are fine grained and highly consolidated due to rapid

deposition.

10
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Figure 2-6 shows how these profiles compare with the DSDP data. The MSI

I composite profile agrees very well with the DSDP data at hole 90 down to about

500 m (Fig. 2-6(a)). Below this depth, it is assumed that disturbance of the sample

accounts for the unrealistically low DSDP velocities.

Figure 2-6(c) shows that the MSI profile does not agree with the DS-)P data

at hole 92 and that the Matthews profile underestimates the reported velocity at

this site. This is believed due to the anomalously high consolidation of the

sediments on the scarp at this site.

Finally, the DSDP measurements at hole 91, shown in Fig. Z-6(b), cannot be

matched with the profiles shown in Fig. 2-5. The MSI and Gregory profiles coincide

with some of the DSDP data at depths between 100 and 200 m and approximately

"agree with data points at about 400-500 m, but there is a distinct trend in the data

toward sound speeds higher than sound speeds indicated by these profiles. The

preliminary explanation of these higher sound speeds is that they are due to a

higher coarse grain fraction (in particular sand) at this site than at hole 90. As
seen in Fig. Z-2, the lithology at hole 90 is clay and silty clay to a depth of 500 m,

S~whereas the lithology at hole 92 is silty clay, silty sand, and sand. Thus, a
reasonable interpretation of the velocities at hole 91 would be a trend similar to

that at hole 90 corresponding to the fine grain fraction, superimposed on a

discontinuous profile with higher velocities corresponding to sediments with a

considerable fraction of sand.

This explanation supports categorization of the Gulf of Mexico into two

depositional regions: the Western Gulf, which is characterized by DSDP hole Q0 and

the MSI velocity profile, and the lower Mississippi Fan, which represents deposition

of sediments with a higher coarse grain fraction. DSDP hole Q1 seems to be in an

overlap area of the two regions.

I
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The acoustical measurements discussed in this report appear to be in the zone

of overlap of these two depositional regions. However, in the absence of other

data, the velocity estimate obtained from the MSI composite profile was used in

the acoustic analysis. This curve fits the DSDP data at hole 90 very well and

appears to be a significant component of the overall velocity profile at hole 91.

The sound speeds indicated by the Matthew's profile and DSDP data at hole 92 are

probably not applicable to the acoustical measurements discussed in this report,

although they are probably suitable for some regions of the Gulf.

Table 2-1 shows sound speeds and densities versus depth obtained from the

MSI velocity profile. Densities were computed using the MSI velocity profile and

the velocity-density relationships of Hamilton. Note that this sound speed profile

shows a slightly "fast" bottom, with a sediment-water speed ratio of

1538/1530 = 1.005. From the analysis of the acoustic bottom interaction data, it

was concluded that the ratio should be 1516/1524 0.995 (Table 4-1).

14



TABLE 2-1

VELOCITY AND DENSITY PROI-LES

Depth MSI Density*

(m) (m/sec)

0- 1530 1.0

0+ 1538 1.57

100 1633 1.68

200 1729 1.78

300 1824 1.89

400 1920 1.99

500 205 Z.10

1000 Z351 2.23

*Calculated from MSI velocity profile using Hamilton's velocity-density

relationships.4
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CHAPTER 3

BOTTOM LOSS DATA

The processing procedure used to derive the bottom loss data is described in

Ref. 1 and consists of three main steps. First, the total propagation loss for each

multipath arrival is determined by comparing received energy in the pulse to the

standard source level for the SUS. Next, using a coherence ray theory model and

assuming a perfectly reflecting bottom, a reference loss for each arrival is

calculated. The battom loss calculated for each arrival is then assumed to be the

difference between the reference and nmeasured losses. Measurements are made in

standard 1/3 octave bands from Z5 Hz to 300 Hz.

The reduced data consisted of 48 SUS detonated at 91 m depth and 47 SUS at

Z44 m depth. The data used were recorded from a receiver at Z290 m depth.

The bottom loss data were limited to frequencies of 300 Hz or less, the

bandwidth of the ACODAC. Exercise geometry restricted the bottom grazir-

a~gles of usable signal arrivals to between 70 and 38°. Short range SUS produced

arrivals with grazing angles greater than 380, but these saturated the receiver.

The exercise conditions resulted in a problem for arrivals with low grazing angles
(70 or less). The receiver was approximately 1110 m above the bottom. The sound

speed profile (Figs. l-Z) indicates that bottom refraction can occur for sources

deeper than 60 m; these paths also refract at the surface. The 244 m sources have

more rays which refract rather than bounce from the surface than the 91 m shots.

As a result, for Z5 of the 244 m shots, bottom refracted arrivals were received

within 0 to 150 msec prior to bottom bounce arrivals. These could not be time

resolved, and contaminated bottom loss data below 140. This situation occurred

only four times for the 91 m shots and then disturbed data for bottom angles of less

than 70. Had the receiver been farther from the bottom, this problem would have

been lessened.

17
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Figures 3-1 - 3-5 are the per bounce bottom loss curves of five frequencies

for the 244 m source. Figures 3-6 - 3-9 contain similar data for the 91 m sources.

In these figures, each plotted symbol represents a bottom loss measurement from a

single arrival. The plotted number denotes the number of bottom reflections of

that arrival.

At 25 Hz and 50 Hz for the 91 m SUS and at 25 Hz for the 214 m SUS, the

curves show complex behavior and have negative values over some angular

intervals. Those are artifacts that arise from a combination of the acoustic

surface interference effect ("Lloyd's mirror effect") and inaccurate source naviga-

tion. 1 Research is currently underway to circumvent this problem by estimating

arrival angles from the data rather than from calculations based on navigation.

These low frequency bottom loss data can be interpreted as meaning that the loss

is very low; actual values must be estimated from the higher frequency data, as

will be done in Chapter 4.

Curves illustrating the per bounce bottom loss averaged over consecutive 5

bins are presented in Figs. 3-10 (91 m), 3-11 (244 m), and 3-12 (both sources). Note

that the bottom loss scale is expanded. Because of the measurement artifact

problems, the 25 Hz and 50 Hz data for the 91 m SUS and the 25 Hz data for the

Z44 m SUS are excluded. Comparing data from the two source depths (Figs. 3-10

and 3-11), one sees a close agreement of the estimates.

For both sources, bottom loss increases with frequency and bottom grazing

angle. Mean bottom loss per bounce ranged from near 1 dB at 7 to approximately
0 0 0

Z.5 dB at 38 for 50 Hz. Losses at Z50 Hz rose from 4 dEL at 7 to 5.7 dB at 38

1.8
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CHAPTER 4

V GEOACOUSTIC MODEL OF WET TEST EXERCISE REGION

The second analysis objective was to determine how well the bottom loss

measurements could be duplicated by theoretical models. This bottom interaction

modeling is based on geoacoustical structure of the ocean bottom, in particular,
9that constructed by Hamilton. The model describes the bottom as a multilayered,

fluid sediment on top of a solid, non-layered basement. Each layer is defined by a

depth function of the geoacoustic parameters. This framework was used by

Mitchell and Lemmon to develop a ray theory model of acoustic interaction with

the ocean bottom. The following analysis is based upon this model. The

parameters consist of the velocity and density profiles, attenuation profile, and the

ratio of the sediment-to-water sound speeds (c I/c) at the water-sediment
s w

interface.

As described in Chapter Z, an initial sound speed profile was obtained from

analysis of archival data. Density data were derived from the velocity using
4Hamilton's density-velocity relationships. Then, an iterative series of bottom loss

calculations and comparisons with data, followed by modifications to the

geoacoustic model, were conducted. The objective here was to refine the cs/c
S/c

ratio and to determine the attenuation profile.

The c /c ratio was determined from the measured bottom loss data. This

parameter strongly affects bottom loss at low grazing angles. Therefore, prelimi-

nary modeling results were compared to the measured loss to determine the best

ratio. The value of 0.995 was selected and the velocity gradients, given in Chapter

Z, were then used to calculate the velocity profile shown in Table 4-1.

To obtain the attenuation profile, the inversion technique of Ref. 9 was used.

The resulting profile is shown in Fig. 4-1, and is tabulated in Table 4-I. Also shown
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.............................................- .



TABLE 4-1

GEOACOUSTIC PARAMETERS FOR THE SEDIMENT IN THE

WET TEST EXERCISE AREA

Compressional

Wave

Depth Velocity Attenuation Density
(m) (m/sec) (dB/m-kHz) (g/cm)_

Bottom Water 1524 1.04

Sediment 0 1516 0.033 1.57

50 1563 0.015 1.63

100 1611 0.008 1.69

zoo00 1706 0.008 1.78

300 1801 0.010 1.89

400 1896 0.012 1.99

500 1991 (0.012)* (Z.10)*

1000 Z327 (0.01z)* (2.23)*

$Values in parenthesis were extrapolated.
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in Fig. 4-1 is the attenuation profile derived for thick sediment regions of the
11

Northwest Indian Ocean. The attenuation data from the Mexican Basin Wet Test

site closely match those labeled "M" (medium) from the Indian Ocean. As reported

in Ref. 11, that region is known to have a silty clay bottom of terrigeneous origin

with turbidite layering. A similar structure should be expected for the Wet Test

region as discussed in Chapter Z.

Figures 4-2 - 4-6 compare the calculated and combined measured bottom

loss. The figures illustrate very good agreement. Both measured and calculated

values are averaged over 1/3 octave bands. Table 4-2 contains the calculated

bottom losses for five frequencies and for grazing angles from 80 to 360.

This close match is important, as it allows extrapolations to the frequency

and angle limits imposed by the measurement system.
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TABLE 4-Z

BOTTOM LOSSES CALCULATED BY A GEOACOUSTIC MODEL OF

THE MEXICAN BASIN OF THE GULF OF MEXICO

Bottom Loss

(dB)

Frequency

(Hz)

Grazing Angle 50 100 160 200 Z50

(deg)

8 0.5 1.1 2.2 3.1 3.5

1Z 0.6 1.5 1.9 3.2 Z.8

16 0.7 1.3 Z.1 Z.6 3.1

20 0.8 1.3 2.1 2.5 3.2

24 0.7 1.3 Z.1 2.8 3.6

28 0.8 1.7 2.8 3.4 4.1

3Z 1.0 2.2 3.6 4.4 4.9

36 1.3 2.9 4.4 4.6 6.8
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